Scheme for Trial STPM Biology Term 1 2022 Set 2

Section A

Nu.	Answer
1	В
2	С
3	С
5	В
	D
6	A
7	В
8	D
9	A
10	D
11	В
12	A
13	С
14	В
15	С

Section B

16. (a) Steroids [1 mark]

(b) X: Cholesterol

Y: Oestrogen [2 marks]

(c)

[1 mark]

- (d) Amphipathic molecules because polar hydrophilic phospholipid heads attracted to water and form hydrogen bonds with the molecules and nonpolar hydrocarbon fatty acid tails form hydrophobic interactions with one another.

 [2 marks]
- (e) Gives membranes fluidity and allow lipid soluble substances and small nonpolar substances to pass through. [1 mark]
- 17. (a) Enzymes immobilization is a process where an enzyme is attached to an inert and insoluble material to increase enzyme efficiency. [1 mark]
 - This process ensures that there is an increased enzyme availability for the substrate and a greater turnover of products. [1 mark]
 - (b) Entrapment in a gel enzymes are physically trapped in a gel for example silica or alginate.

Entrapment in microcapsule – Enzyme is trapped in a permeable microcapsule.

Cross-linking – Enzymes form cross links with other molecules.

Covalent bonding – Enzyme is bound covalently to a matrix of cellulose or collagen.

Adsorption on to an insoluble matrix for example resin.

Any 3 [3 marks]

- (c) The enzymes can be reused.
 - The products are not contaminated by the enzyme.

- The enzymes are more thermostable or resistant to changes in temperature or the enzymes can be used over a wider range of temperature.
- It is more economical/ High turnover rate of products.
- The enzymes can be used continuously.

Any 3 [3 marks]

Section C

18.(a)	- The surface area of membrane.	1M
	- The greater the surface area, the higher the rate of diffusion.	1M
	 The greater the surface area, the higher the rate of diffusion. The diffusion distance. The shorter the diffusion distance, the greater the rate of diffusion or the thicker the membrane, the greater the diffusion distance and the lower the rate of diffusion. The concentration gradient. The greater the difference in concentration between two places the faster the rate of diffusion between them or the steeper the gradient , thehigherthe rate of diffusion. 	1M 1M 1M
	- The size and type of molecules.	1M
	- Small and non-polar molecules e.g oxygen, carbon dioxide and lipid soluble substances e.g alcohol, vit.A, D,E and K can diffuse through the lipid bilayer of the membrane.	1M
	- Polar and charged particles pass through pores in the channel proteins.	1M
	- Molecules that are soluble in lipids can cross the membrane faster than water soluble ones.	1M
	- Temperature	1M
	- At higher temperatures, molecules have more kinetic energy and so diffuse more quickly.	1M
		Total=12M Max =10M
(b)	- Water potential is a measure of the potential energy in water that drives the movement of water through plants and is represented by the equation $\psi = \psi_s + \psi_p$	1M
	 The solute potential (ψ_s) of pure water is zero since it does not contain any amount of solute. 	1M
	- The more the amount of solute is,the lower is the water potential and the solute potential is negative.	1M

- Water potential is affected by the pressure potential (ψ_p) of the cell	1M
wall against the cellular components.	
- Pressure potential always has a positive value.	1M
- Pressure potential is a zero when the cell is flaccid.	1M
	Total=6M
	Max=5M

- 19.(a) Enzymes are globular protein catalysts that increase the rate of specific chemical reactions

 There are six types of enzymes:
 - (i) oxidoreductase
 - (ii) transferase
 - (iii) hydrolase
 - (iv) lyase
 - (v) isomerase
 - (vi) ligase/synthetase

[Max 6 marks]

(b)

(i) **Oxidoreductase enzymes** transfer oxygen, electron or hydrogen ion from one molecule (the oxidant) to another (the reductant).

Examples:

Peroxidase

 $ROOR' + electron donor (2 e-) + 2H^+ --- ROH + R'OH$

Oxidase

Cytochrome a $(Cu^+) + 2H^+ + 1/2 O_2$

Cytochrome a $(Cu^2) + H_2O$

(ii) **Transferase enzyme** transfer a functional group (e.g. a methyl or phosphate group) from one molecule to another.

Examples:

Transaminase

NH2CR1 HCOOH + R2 COCOOH -----> R1COCOOH + NH2CR2HCOOH

Phosphorylase

Glycogen + phosphate -----> glucose phosphate

(iii) **Hydrolase enzyme** catalyse hydrolysis or breaking up of a complex chemical with water

Example:

Maltase

Maltose + H₂O-----> 2 glucose

(iv) **Lyase enzymes** catalyse non-hydrolytic reactions in which groups are either removed or added to a substrate, thereby creating or eliminating a double bond, especially between carbon atoms or between carbon and oxygen.

Examples:

Decarboxylase (removal of CO₂)

Pyruvate + coenzyme A + NAD + Acetylcoenzyme A + NADH + H⁺ + CO₂

• Carboxylase (fixation of CO₂)

Ribulose biphosphate (RuBP) + H₂O+CO₂ + 2 phosphoglyceric acid (PGA)

(v) **Isomerase enzymes** catalyse changes within one molecule, often by rearranging the functional groups and converting the molecule into one of its isomeric forms.

Examples:

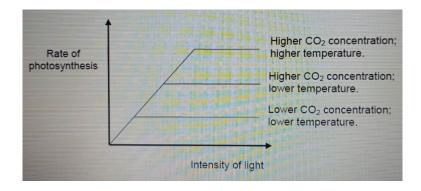
Phosphoglucomutase

Glucose-1-phosphate-----Acetyl coenzyme A+NADH+H++CO2 Phosphohexosiomerase

- Glucose-6-phosphate----- Fructose -6 phosphate
 - (vi) **Ligase/Synthetase** enzymes catalyse a reaction that joins 2 substrates using energy derived from simultaneous hydrolysis of a nucleotide triphosphate

examples:

Aminoacyl tRNA synthetase


Glycine + tRNA + ATP ----- Glycine-tRNA + AMP + pyrophosphate(PPi)

[Max 9 marks]

- 20.(a) Light energy (photon) is used in the light phase of photosynthesis.
 - The photons are absorbed by the primary pigments of photosynthesis for photoactivation process.
 - When light intensity is very low, photosynthesis rate is low because photoactivation of photosystem on the thylakoid membrane cannot occur.
 - When light intensity is increased, the rate of photosynthesis increases proportionally to light intensity as more NADPH and ATP are produced in the light dependent phase of photosynthesis.
 - At higher light intensity, the rate photosynthesis reaches a maximum level called the saturation point/ photosynthetic pigment become saturated with light.
 - Beyond the saturation point, further increase in light intensity have no effect/ rate of photosynthesis reached a plateau.
 - The rate of photosynthesis is limited by other limiting factors such as carbon dioxide concentration and temperature.

[Max 5 marks]

- (b) The main factors affecting rate of photosynthesis are light intensity, carbon dioxide concentration and temperature.
 - The rate of a photosynthesis process will be limited by the factor which is in shortest supply.
 - Any change in the level of a limiting factor will affect the rate of reaction.
 - For example, the amount of light will affect the rate of photosynthesis.
 - If there is no light, there will be no photosynthesis.
 - As light inten
 - |}sity increases, the rate of photosynthesis will increase as long as other factors are in adequate supply.
 - As the rate increases, eventually another factor will come into short supply.
 - The graph below shows the effect of low carbon dioxide concentration.

- It will eventually be insufficient to support a higher rate of photosynthesis, and increasing light intensity will have no effect, so the rate plateaus.
- If a higher concentration of carbon dioxide is supplied, light is again a limiting factor and a higher rate can be reached before the rate again plateaus.
- If carbon dioxide and light levels are high, but temperature is low, increasing temperature will have the greatest effect on reaching a higher rate of photosynthesis.

[Max 10 marks]